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Today’s Lecture

▪ Movement of water in soils

▪ Darcy's law and conservation of mass of water in soils

▪ Flow in saturated soils

▪ Hydraulic conductivity measurements (laboratory and field)

See Notes 3.pdf (up to page 14)
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Transport phenomena

Transport phenomena (e.g., heat and mass transfer) generally involve two types of

processes:

▪ movement, as described by an equation of motion;

▪ temporal variations of the stock resulting from:

o external factors (precipitation, evaporation, etc.)

o local consumption or production (root extraction, biological processes, etc.)

o exchanges between phases (frost, condensation, evaporation, etc.)

Stock variations are described by the conservation of mass or energy (continuity

equation)
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Laminar flow in narrow tubes

Source: Or, Tuller, & Wraith, 1994-2018

Adjacent layers in a flowing fluid transmit tangential stresses (drag) due 

to the attraction between fluid molecules. The relationship between the 

drag force and flow velocity is known as Newton's law of viscosity:

𝜏 =
𝐹

𝐴
= 𝜂

𝑑𝑣

𝑑𝑦

where 𝜏 is the shearing stress (a force F acting on an area A), 𝜂 is the 

coefficient of viscosity [Pa s], 𝑣  is fluid velocity, and y is a spatial 

coordinate perpendicular to the direction of flow. 

Now consider a fluid flowing through a cylindrical tube having diameter

2R. Assuming laminar flow (caused by the pressure gradient ∆𝑃). The

pressure force on a fluid cylinder of length L and radius y is ∆𝑃𝜋𝑦2, which

must be equal to the frictional resistance force, 2𝜋𝑦𝐿𝜏, acting on the

circumference of the fluid cylinder. We thus obtain:

𝑑𝑣

𝑑𝑦
=

𝜏

𝜂

𝑑𝑣

𝑑𝑦
= −

∆𝑃𝑦

2𝜂𝐿

Note: the negative here sign arises from the decrease in v with the increase in y from the center

න
𝑣 𝑦

𝑣 𝑅 =0

𝑑𝑣 = −
∆𝑃

2𝜂𝐿
න

𝑦

𝑅

𝑦 ∙ 𝑑𝑦 𝑣(𝑦) =
∆𝑃

4𝜂𝐿
𝑅2 − 𝑦2
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Laminar flow in narrow tubes

The expression for 𝑣 𝑦 describes a parabolic velocity distribution, with

the maximal velocity being along the central axis (i.e., y=0):

To calculate the volume (quantity) of water flowing through the tube per

unit time, Q [L3/t], we need to integrate the velocity over the cross-

sectional area of the tube (note, we use a cylindrical coordinate system):

Source: Or, Tuller, & Wraith, 1994-2018

𝑣𝑚𝑎𝑥 =
∆𝑃

4𝜂𝐿
𝑅2

𝑄 = න
0

2𝜋

න
0

𝑅

𝑣 𝑟 ∙ 𝑟 ∙ 𝑑𝑟 𝑑𝜗 = 2𝜋
∆𝑃

4𝜂𝐿
න

0

𝑅

𝑅2 − 𝑟2 𝑟 ∙ 𝑑𝑟 =
𝜋∆𝑃

2𝜂𝐿

𝑅4

2
−

𝑅4

4

This shows that the volume of flow is proportional to the pressure drop per unit distance (∆P/L) and the fourth power of 

the radius of the tube. Poiseuille's Law is often used as a model for flow in soil pores

Poiseuille's Law: ҧ𝑣 =
𝑄

𝜋𝑅2 =
𝑅2

8𝜂

∆𝑃

𝐿

Average velocity: 

𝑄 =
𝜋∆𝑃𝑅4

8𝜂𝐿

𝑑𝐴 = 𝑑𝑥𝑑𝑦
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Laminar flow in narrow tubes

Source: Or, Tuller, & Wraith, 1994-2018

Self-
Study
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Darcy’s Law

Soil pores do not resemble uniform and smooth tubes, which form the basis for Poiseuille's Law.

In most cases soil pores are highly irregular, having an intricate geometry which prohibits

microscopic description of flow pathways. For this reason, flow in soils and other porous media is

generally described using macroscopic or averaging terms. In this type of representation, the

detailed flow pattern is replaced by an equivalent average of the microscopic velocities crossing a

control plane in the porous medium.

Source: https://echo2.epfl.ch/VICAIRE/mod_3/chapt_5/main.htm 

https://echo2.epfl.ch/VICAIRE/mod_3/chapt_5/main.htm
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Darcy’s Law

Source: Brutsaert (2005)Wikipedia

The first quantitative description of

flow through a porous medium was

reported by the French engineer,

Henri Darcy (1856), who was in

charge of enlarging and modernizing

the water works of Dijon.

Sand filters were used at the time,

but the physics of the water flow

through porous media was

completely unknown so Darcy

conducted experiments on water

filtration (using a 3.5 m vertical tank).
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Darcy’s Law

The findings of Darcy can be summarized by the following

equation:

Hillel (2003)

Darcy’s Law𝑞 =
𝑄

𝐴
= 𝐾

∆𝐻

𝐿

where q is the water flux density (the discharge rate

Q=Volume/time flowing through a cross-sectional area A), K

is a proportionality constant known as the saturated

hydraulic conductivity, and ∆H is the difference in

hydraulic potential between two points separated by a

distance L.

Because the hydraulic head H does not vary linearly along the streamlines, local values of the hydraulic slope

must be considered. At the limit, when L→0, the finite difference ratio ΔH/L is replaced by dH/dx , and Darcy's

law in the differential form is: 

𝑞 = −𝐾
𝑑𝐻

𝑑𝑥

Note: The negative sign is introduced as flow

occurs in a direction of decreasing potentials
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Flow in saturated soils (equilibrium)

∆𝐻 = 0 No flow

Gravitational, pressure, and total hydraulic head

The water pressure is notequal along the column, 

being greater at the bottom than at the top of the 

column. 

Why, then, will the water not flow from a zone of 

higher pressure to one of lower pressure?

Two opposing gradients exists (pressure and gravitational) which in effect cancel each other, so the total

hydraulic head is constant throughout the column (indicated by the piezometers).

Remember: H = h + z

Hillel (2003)
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Flow in saturated soils (horizontal column)

q

Hillel (2003)
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Flow in saturated soils (vertical column)

q

Hillel (2003)
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Flow in saturated soils (vertical column)

q

Hillel (2003)
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Flow in saturated soils (stratified column)

q

Hillel (2003)
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Flow in saturated soils (stratified column)

Self-
Study

See Notes 3 and Excel file in Moodle
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Limitations of Darcy’s law

Darcy' law – which supposes a laminar flow – is valid for

Reynolds number (i.e., ratio of inertial forces to viscous

forces) less than 1, but the upper limit can be extended up

to 10. The inception of the turbulent flow can be located at

Reynolds numbers greater than 60…100. Between the

laminar and the turbulent flow there is a transition zone,

where the flow is laminar but non-linear. In a general way,

Darcy's law can be written:

VICAIRE - Module 3 - Chapter 5 (epfl.ch)𝑞 = −𝐾
𝑑𝐻

𝑑𝑥

𝑚

Deviations from Darcy’s law may also occur at the opposite end of the flow-velocity range, namely, at low gradients 

and in narrow pores. A possible reason for this anomaly is that the water in close proximity to the particle surfaces and

subject to their adsorptive force fields may be more rigid than ordinary bulk water and may exhibit the properties of a

non-Newtonian fluid.

▪ 𝑚 = 1 mlaminar flow (Darcy is valid) 
▪ 𝑚 ≠ 1 in karstic limestones and coarse 

gravel with Re>100

https://echo2.epfl.ch/VICAIRE/mod_3/chapt_5/main.htm
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Darcy’s Law (analogies)

Mathematically, Darcy’s law is similar to the linear transport equations of classical physics, such as 

Ohm’s law (stating that the current, or flow rate of electricity, is proportional to the electrical potential 

gradient), Fourier’s law (the rate of heat conduction is proportional to the temperature gradient), and 

Fick’s law (the rate of diffusion is proportional to the concentration gradient).

General Form: 𝒒 = −𝐾∇𝜙 𝒒 = flux (vector field)

𝐾 = tranfer coefficient

𝜙 = potential (scalar field)

∇𝜙 = driving force (gradient)

Process Law q K 𝜙

Water movement 
(porous media)

Darcy Water flux Hydraulic 
conductiviy

Hydraulic potential, 
H

Heat tranfer Fourier Heat flux Thermal 
conductivity

Temperature, T

Solute tansport Fick Solute flux Diffusion coefficient Concentration, C
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Darcy’s Law (generalization)

𝒒 = −𝐾∇𝐻 = −𝐾∇(ℎ + 𝑧)In short:

𝒒 = 𝑞𝑥,  𝑞𝑦 , 𝑞𝑧 = −𝐾𝑥

𝜕𝐻

𝜕𝑥
, −𝐾𝑦

𝜕𝐻

𝜕𝑦
, −𝐾𝑧

𝜕𝐻

𝜕𝑧

𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 = 𝐾

𝐻 = ℎ + 𝑧Since:

𝒒 = −𝐾𝑥

𝜕ℎ

𝜕𝑥
, −𝐾𝑦

𝜕ℎ

𝜕𝑦
, −𝐾𝑧

𝜕ℎ

𝜕𝑧
+ 1

𝐾𝑥 ≠ 𝐾𝑧
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Brief recap: Gradient, divergence, etc

https://e-magnetica.pl/

𝑓 = 𝑓(𝑥, 𝑦, 𝑧) Scalar-valued differentiable function

∇ =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
Gradient

∇𝑓 = 𝑔𝑟𝑎𝑑 𝑓 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
Gradient of 𝑓 (vector field)

∇ ∙ 𝑭 = 𝑑𝑖𝑣 𝑭 =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
∙ 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 =

𝜕𝐹𝑥

𝜕𝑥
+

𝜕𝐹𝑦

𝜕𝑦
+

𝜕𝐹𝑧

𝜕𝑧
Divergence (scalar field)

𝑭 = (𝐹𝑥, 𝐹𝑦, 𝐹𝑧) vector field

𝑑𝑖𝑣 ∇𝑓 = ∇ ∙ ∇𝑓 = ∇2𝑓 = ∆𝑓 =
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
∙

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
=

𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑥2
Laplacian (scalar field)
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Divergence theorem

Gauss (or divergence) Theorem

Ω

𝜕Ω

𝒏

𝒒 =

𝑞𝑥

𝑞𝑦

𝑞𝑧

න
Ω

∇ ∙ 𝒒 𝑑𝑉 = ර
𝜕Ω

𝒒 ∙ 𝒏 𝑑𝑆

𝑚 = 𝜌𝑉

The divergence theorem states that any continuity equation can be written in a 
differential form (in terms of a divergence) and an integral form (in terms of a flux)
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Continuity equation (Divergence theorem)

Ω

𝜕Ω

𝒏

𝒒 =

𝑞𝑥

𝑞𝑦

𝑞𝑧

𝑚 = 𝜌𝑉

𝑇ℎ𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ
𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 

𝑚 𝑒. 𝑔. 𝑚𝑎𝑠𝑠  𝑖𝑛 Ω
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠

= −
𝑇ℎ𝑒 𝑟𝑎𝑡𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑚
𝑙𝑒𝑎𝑣𝑒𝑠 Ω 𝑎𝑐𝑟𝑜𝑠𝑠 𝜕Ω

𝜕

𝜕𝑡
න

Ω

𝜌𝑑𝑉 = − ර
𝜕Ω

𝒒 ∙ 𝒏 𝑑𝑆

න
Ω

𝜕𝜌

𝜕𝑡
𝑑𝑉 = − න

Ω

∇ ∙ 𝒒 𝑑𝑉

Ω does not change in time +

Divergence theorem

integral form

𝜕𝜌

𝜕𝑡
= −∇ ∙ 𝒒 differential form
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Continuity equation (Taylor expansion)

Taylor expansion

𝑞𝑥 𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 +

1

2!

𝜕2𝑞𝑥

𝜕𝑥2 𝑑𝑥2 + ⋯

𝑑𝑥

𝑑𝑦

𝑑𝑧
𝜕𝑚

𝜕𝑡
= 𝐼𝑁 − 𝑂𝑈𝑇

𝐼𝑁 = 𝑞𝑥𝑑𝑦𝑑𝑧 + 𝑞𝑦𝑑𝑥𝑑𝑧 + 𝑞𝑧𝑑𝑥𝑑𝑦

𝑞𝑦

𝑞𝑧

𝑥

𝑧

𝑦

𝑂𝑈𝑇 = 𝑞𝑥 +
𝜕𝑞𝑥

𝜕𝑥
𝑑𝑥 𝑑𝑦𝑑𝑧 + 𝑞𝑦 +

𝜕𝑞𝑦

𝜕𝑦
𝑑𝑦 𝑑𝑥𝑑𝑧 + 𝑞𝑧 +

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑧 𝑑𝑥𝑑𝑦

𝜕𝑚

𝜕𝑡
=

𝜕𝜌

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐼𝑁 − 𝑂𝑈𝑇 = −

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑦

𝜕𝑦
+

𝜕𝑞𝑧

𝜕𝑧
𝑑𝑥𝑑𝑦𝑑𝑧

𝑚 = 𝜌(𝑥, 𝑦, 𝑧) ∙ 𝑉With:

𝜕𝜌

𝜕𝑡
= −∇ ∙ 𝒒
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Continuity equation

The conservation (or continuity) equation states that the temporal variation of the variable considered

(water content, density of heat, concentration, etc.) is equal to the spatial variation of the flow,

corrected for possible contributions, losses or transformations within the system

General Form:

𝜌 = Volumetric concentration of the variable considered

𝑞 = flux across the system boundaries

𝑟𝑖 = rate of production, degradation, or transfromation     

      within the domain (many sources/sinks i may exist)

Sustance 𝜌 Unit q Unit

Water Water content, 𝜃 m3 m-3 Darcy’s law m s-1

Heat Quantity of heat J m-3 Fourier’s law J m-2 s-1

Chemical substance or gas Concentration kg m-3 Fick’s law kg m-2 s-1

𝜕𝜌

𝜕𝑡
= −∇ ∙ 𝒒 + ෍

𝑖
𝑟𝑖
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Saturated flow

𝜕𝜃

𝜕𝑡
= −∇ ∙ 𝒒

Darcy’s law, by itself, is sufficient only to describe steady, or stationary, flow processes, in which the flux remains

constant and equal throughout the conducting medium (and hence the potential and gradient at each point remain

constant in time). Unsteady, or transient, flow processes, in which the magnitude and possibly even the direction of

the flux and potential gradient vary in time, require also the law of conservation of matter:

𝜕𝜃

𝜕𝑡
= ∇ ∙ 𝐾∇𝐻

Conservation of 
mass

Darcy’s law

General Flow 

equation 

Gravitational + 
pressure head 𝜕𝜃

𝜕𝑡
= ∇ ∙ 𝐾 ∇ℎ + ∇𝑧

In 1D:
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥
𝐾𝑥

𝜕ℎ

𝜕𝑥 horizontal flow ( Τ𝜕𝑧 𝜕𝑥 = 0) 

vertical flow ( Τ𝜕𝑧 𝜕𝑧 = 1) 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
𝐾𝑧

𝜕ℎ

𝜕𝑧
+ 1

If saturated soil with

incompressible matrix ( Τ𝜕𝜃 𝜕𝑡 =
0), isotropic (𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧) and 

homogeneous soil ( 𝐾  is the 

same everywhere) we get:

∇2𝐻 = 0
Laplace Equation

(elliptic PDE)



ENV-222

Flux, flow velocity, and tortuosity

Flux = the volume of water V passing through a unit cross-sectional area A (perpendicular to the flow 

direction) per unit time t [L T-1]

The flux has dimensions of velocity, yet the actual flow velocity is something different. Specifically:

▪ one cannot refer to a single velocity of liquid flow, but at best to an average velocity;

▪ flow does not take place through the entire cross-sectional area A, and the average velocity of the 

liquid must be greater than the flux q because the “active” area is smaller than A

The Groundwater Project

𝑞 =
𝑄

𝐴
𝑣 =

𝑄

𝐴𝑛𝑒
=

𝑞

𝑛𝑒

Effective porosity

Note: if 𝑛𝑒 =
1

3
, then 𝑣 = 3𝑞

https://books.gw-project.org/hydrogeologic-properties-of-earth-materials-and-principles-of-groundwater-flow/chapter/darcys-law/
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Flux, flow velocity, and tortuosity

Hillel (2003)

Flux = the volume of water V passing through a unit cross-sectional area A (perpendicular to the flow 

direction) per unit time t [L T-1]

The flux has dimensions of velocity, yet the actual flow velocity is something different. Specifically:

▪ one cannot refer to a single velocity of liquid flow, but at best to an average velocity;

▪ flow does not take place through the entire cross-sectional area A, and the average velocity of the 

liquid must be greater than the flux q because the “active” area is smaller than A

Tortuosity, T = the ratio of the average roundabout path 

to the apparent, or straight, flow path; that is, the ratio of 

the average length of the pore passages I

𝑇 =
𝐼

𝐿
≥ 1 𝜏 =

1

𝑇

0.3 < 𝜏 < 0.7

Tortuosity factor:
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Hydraulic conductivity (permeability & fluidity)

Hillel (2003)

The hydraulic conductivity K is not a property of the 

soil alone. Rather, it depends jointly on the attributes 

of the soil (porosity, tortuosity, pore size, …) and of 

the fluid (density, viscosity).

𝐾 = 𝑘𝑓 [𝐿 𝑇−1]

Intrinsic permeability [𝐿2]𝑘 =

Fluidity [𝐿−1𝑇−1]𝑓 =
𝜌𝑔

𝜂

𝐾 =
𝑘𝜌𝑔

𝜂

Where:

https://echo2.epfl.ch/
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Hydraulic conductivity (spatial variability)

Saturated Hydraulic Conductivity

Ferrer-Julia et al. (2021)
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Estimating the Saturated Hydraulic Conductivity

In the absence of direct measurements, empirical formulas can be used to link saturated hydraulic
conductivity (Ks, cm/s) to certain soil properties (e.g., granulometry, porosity, pore distribution,
specific surface):

𝐾𝑠 = 𝐷10
2Hazen formula (for sands):

Kozeny formula: 𝐾𝑠 = 7.94
𝑛3

𝑛−1 2𝜏𝑑𝑒
2

𝐷10 = diameter of the 10 
percentile grain size of the 
material (mm)

Where

𝑛 = porosity
𝜏 = temperature correction 
coefficient
𝑑𝑒 = effective diameter

Where
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Measuring Saturated Hydraulic Conductivity

Experiments may be designed to use Darcy's law for determining the saturated 

hydraulic conductivity (Ks) from measurements of hydraulic heads and water flux 

density (denoted as flux) from a soil column of a known geometry. We can use either 

the vertical or the horizontal setup.

▪ The constant head method is based on maintaining constant heads across the soil 

sample

▪ The falling head method, conducted by recording the initial and final depths of the

ponded water, expressed as pressure head in length units, by means of a falling

head permeameter.
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Measuring Saturated Hydraulic Conductivity

Constant head method 

𝑄 = −𝐾𝑠

𝐼 + 𝐿

𝐿
𝑆

𝐾𝑠 = −
𝑄𝐿

𝑆(𝐼 + 𝐿)

Note: flow Q is negative because it is oriented in the opposite direction of the axis z
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Measuring Saturated Hydraulic Conductivity

Falling head method 

𝑄 =
𝑑𝑉

𝑑𝑡
= 𝑆

𝑑𝑇(𝑡)

𝑑𝑡

𝑄 = −𝐾𝑠

𝐿 + 𝐼 𝑡 − 0

𝐿
𝑆 = −𝐾𝑠

𝑇(𝑡)

𝐿
𝑆

−𝐾𝑠

𝑆

𝐿
𝑡 = 𝑆 ∙ 𝑙𝑛

𝑇 𝑡

𝑇0
= −𝑆 ∙ 𝑙𝑛

𝑇0

𝑇(𝑡)

𝐾𝑠 =
𝑆𝐿

𝑆𝑡
∙ 𝑙𝑛

𝑇0

𝑇(𝑡)

Upon integration
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Measuring Saturated Hydraulic Conductivity

AmoozemeterDouble-ring infiltrometerGuelph permeameter

Field measurements
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Useful links

▪ Flow Equations in Porous Media: see here

▪ Derivation of Darcy’s law (from Navier-Stokes equation):

o Hubbert (1957)

o Neuman (1977)

▪ Analogies (Darcy, Ohm, Fourier, and Fick laws):

o Soil water and Heat

o Pfister (2014) – see Appendix C

https://echo2.epfl.ch/VICAIRE/mod_3/chapt_6/main.htm
https://www.tandfonline.com/doi/pdf/10.1080/02626665709493062
https://link.springer.com/article/10.1007/bf01376989
https://www.acquesotterranee.net/index.php/acque/article/view/013-12-0025
https://watermark.silverchair.com/270_1_online.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAABXgwggV0BgkqhkiG9w0BBwagggVlMIIFYQIBADCCBVoGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMWr8fLis5gqMz06PHAgEQgIIFKz-H-W4YOjlYhnv6toAg_JUE60DamIruiAu3CKGkNChJNfsBqngKsFoeGtJY8hW9EMx0mgFuIiDk1Jd_fXJMT_WFrHmBBsSqF8wTfdam6GQO4gf0OnZ0eOYKks9VsNgNE-SMG_2at7BKF9ZrPSdt0aCeWSDGY5lNGNIvAveWXivuPQwAXDqXqL7isjNCqB0sk18csXE0FQZ7rhcdJ3JSh_lKrVYf_u217s_uLjVsmEbGnj3nQODLQn2ORpqzkHiaoiUlUYLk7n8kj2rkFRjmW8sG1SDVimvAKrZ3dPo6gniHpdCIOTlOdMBQXWVKIIvsjHPatnrgn8TsGKjGqIoZvshqcH3L3t8JfeHiMoo_mInvDjc1ePoVUkY9TflYt2EqD-xUtPc_MaShW5ZpP0n2Zz_xhyWdToJ6vvgw7l2WeJJuMDxEXulsNhtDajASY0XgoezEZHtttFg1tzIGNG_kR2IXhovFDpTkU9a1Cu5JM6mwyvpNlgv8usU7JcvEUOMcdBodSH0agJniYLDOGFrgfG42btoPVeetqeWLTpnlKdJs7q9OKNdXvJsIuTp7jEbPyhvXFXkELRWm59y1fFI87jm60Ji7XQnZaDmaUNTAq2R4w23hY2loMzEj50LbIwvCEQpj6oBE7ZFR9l2syOV7eulxwRcKepaLrBu6FFhvyKe3QTIk7rAJIK1_D6nDL6HIBAADGejV9lrAcNY20bGvCQjo5jE8M5yxaHRQibF7lrwKk5VEBwpsTViwctvrMRwfvZ3Fsnf4ci5WeOotiJySCxbe7JwvforRkw11J-lAimr_bUkaze7whwXtJdKub71GoDkNvfChGacGS3Hlf57FtQNZ46RBzaOi5QDcQ2PdPYyyTgnJds8l-F1PisiHVV4HxXvxsV4Yatgp7WtKXW7FLR4IvF5LHWlLIg5MpdEUkaKIKs-QIlUg0BuL3Bz9IffJ581JNuoTXd2s5mCLAmtHlxA8xxv0N07hl_78Lpe2xJ0JOoU45nLSo56y5rH2F2UA1TBxlCEFZRqwQmVFSKl9Z7kXxJXulKoh-HhNqkFz9w3e2wEDFFycODHoitjc3N0d8QpWYBeV0BARahbJi6pn3lTxhQWOjBFplcI_MZKE-jr7vvSXgx0josOeOe7UXgtLdSztiRjZCaFaOTt75jP5Rqq46DSYi0uCElZ9G_vdkrtuabJLMKil61xpVvHQ-57BfvE2FwgwwEVhUCzuXPknWdNI8eIP_V0ZvpGGMaozwzAwamV3H2tbKuAQpocjqmbfCXhmf9wDXTRvNWgKJ9t4E9VihCO7nHWDkCIKpxVjZPfKcm3Y7yZk-e78DVIz4_qlb7KMU-uQXH6TQfbXlOi8pKOQEFgMh5ZdpnqBRZgYHBO6H0I3uZuHAMzVcME9Hl_Sf5PqYtjy2xVdt1Lzrxt8i_JzQCd_ZCT4ScGK9hLfhKhUAqihZMbQK6QDtNLIRbK3tC9Y6pNFHOnL8-KDmcSL8wZiW0HHy_SeW_v_s7vwEdyE_1yo42qOu_Si271Xz9GunWGsUnVJmRTjyJGat7EdYlBXeDSDJXYKkBZxpR3jMqNwLuTvjKHlQdFlmJyQG52CKXRAprkddVgmsEEb7N7do6XNDFqOy35glGKRiqYCsBYDlP6XoLDt5k3BrQjyXrStvB2-Pf8hnxX4KCg8tarOJe4gevhsyHTIszQkQWMhHVGO6Mkt2lR8lUF7ZLBaOpQa30ZtqyRvTyHOZPEJEBRUe5_-G3_3jskHskDqPQ
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This week exercises & assignments

▪ Exercises for Weeks 4 are available in Moodle

o In case you want to try more problems, additional exercises are

also available (just try the problem before checking the solution!)

▪ Computer Lab: 1D infiltration model (Assignment 3)

▪ For next week: Read pg. 14-27 of Notes 3.pdf



ENV-222

Appendix: Conservation of mass (divergence theorem)
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